General Certificate of Education June 2008
Advanced Subsidiary Examination
MATHEMATICS
MPC2

A~A

ASSESSMENT and
Unit Pure Core 2

Thursday 15 May $2008 \quad 9.00$ am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Write $\sqrt{x^{3}}$ in the form x^{k}, where k is a fraction.
(b) A curve, defined for $x \geqslant 0$, has equation

$$
y=x^{2}-\sqrt{x^{3}}
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the equation of the tangent to the curve at the point where $x=4$, giving your answer in the form $y=m x+c$.

2 The diagram shows a shaded segment of a circle with centre O and radius 14 cm , where $P Q$ is a chord of the circle.

In triangle $O P Q$, angle $P O Q=\frac{3 \pi}{7}$ radians and angle $O P Q=\alpha$ radians.
(a) Find the length of the arc $P Q$, giving your answer as a multiple of π.
(b) Find α in terms of π.
(c) Find the perimeter of the shaded segment, giving your answer to three significant figures.

3 A geometric series begins

$$
20+16+12.8+10.24+\ldots
$$

(a) Find the common ratio of the series.
(b) Find the sum to infinity of the series.
(c) Find the sum of the first 20 terms of the series, giving your answer to three decimal places.
(d) Prove that the nth term of the series is 25×0.8^{n}.

4 The diagram shows a triangle $A B C$.

The size of angle $B A C$ is 65°, and the lengths of $A B$ and $A C$ are 7.6 m and 8.3 m respectively.
(a) Show that the length of $B C$ is 8.56 m , correct to three significant figures.
(b) Calculate the area of triangle $A B C$, giving your answer in m^{2} to three significant figures.
(c) The perpendicular from A to $B C$ meets $B C$ at the point D.

Calculate the length of $A D$, giving your answer to the nearest 0.1 m .
(3 marks)

5 (a) Write down the value of:
(i) $\log _{a} 1$;
(ii) $\log _{a} a$.
(b) Given that

$$
\log _{a} x=\log _{a} 5+\log _{a} 6-\log _{a} 1.5
$$

find the value of x.

6 The nth term of a sequence is u_{n}.
The sequence is defined by

$$
u_{n+1}=p u_{n}+q
$$

where p and q are constants.
The first three terms of the sequence are given by

$$
u_{1}=-8 \quad u_{2}=8 \quad u_{3}=4
$$

(a) Show that $q=6$ and find the value of p.
(b) Find the value of u_{4}.
(c) The limit of u_{n} as n tends to infinity is L.
(i) Write down an equation for L.
(ii) Hence find the value of L.

7 (a) The expression $\left(1+\frac{4}{x^{2}}\right)^{3}$ can be written in the form

$$
1+\frac{p}{x^{2}}+\frac{q}{x^{4}}+\frac{64}{x^{6}}
$$

By using the binomial expansion, or otherwise, find the values of the integers p and q.
(3 marks)
(b) (i) Hence find $\int\left(1+\frac{4}{x^{2}}\right)^{3} \mathrm{~d} x$.
(4 marks)
(ii) Hence find the value of $\int_{1}^{2}\left(1+\frac{4}{x^{2}}\right)^{3} \mathrm{~d} x$.
(2 marks)

8 The diagram shows a sketch of the curve with equation $y=6^{x}$.

(a) (i) Use the trapezium rule with five ordinates (four strips) to find an approximate value for $\int_{0}^{2} 6^{x} \mathrm{~d} x$, giving your answer to three significant figures. (4 marks)
(ii) Explain, with the aid of a diagram, whether your approximate value will be an overestimate or an underestimate of the true value of $\int_{0}^{2} 6^{x} \mathrm{~d} x$.
(b) (i) Describe a single geometrical transformation that maps the graph of $y=6^{x}$ onto the graph of $y=6^{3 x}$.
(ii) The line $y=84$ intersects the curve $y=6^{3 x}$ at the point A. By using logarithms, find the x-coordinate of A, giving your answer to three decimal places.
(4 marks)
(c) The graph of $y=6^{x}$ is translated by $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ to give the graph of the curve with equation $y=\mathrm{f}(x)$. Write down an expression for $\mathrm{f}(x)$.
(2 marks)

9 (a) Solve the equation $\sin 2 x=\sin 48^{\circ}$, giving the values of x in the interval $0^{\circ} \leqslant x<360^{\circ}$.
(b) Solve the equation $2 \sin \theta-3 \cos \theta=0$ in the interval $0^{\circ} \leqslant \theta<360^{\circ}$, giving your answers to the nearest 0.1°.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

